skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gary, Bruce"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present follow-up photometry and spectroscopy of ZTF J0328−1219, strengthening its status as a white dwarf exhibiting transiting planetary debris. Using TESS and Zwicky Transient Facility photometry, along with follow-up high-speed photometry from various observatories, we find evidence for two significant periods of variability at 9.937 and 11.2 hr. We interpret these as most likely the orbital periods of different debris clumps. Changes in the detailed dip structures within the light curves are observed on nightly, weekly, and monthly timescales, reminiscent of the dynamic behavior observed in the first white dwarf discovered to harbor a disintegrating asteroid, WD 1145+017. We fit previously published spectroscopy along with broadband photometry to obtain new atmospheric parameters for the white dwarf, with M= 0.731 ± 0.023 M,Teff= 7630 ± 140 K, and [Ca/He] = − 9.55 ± 0.12. With new high-resolution spectroscopy, we detect prominent and narrow Na D absorption features likely of circumstellar origin, with velocities 21.4 ± 1.0 km s−1 blueshifted relative to atmospheric lines. We attribute the periodically modulated photometric signal to dusty effluents from small orbiting bodies such as asteroids or comets, but we are unable to identify the most likely material that is being sublimated, or otherwise ejected, as the environmental temperatures range from roughly 400 to 700 K. 
    more » « less
  2. null (Ed.)